Justctf2025

Satellite

一道misc+re的题

给了一个流量包,直接wireshark分析,这一行非常清楚的flag字样,点击看到了text,猜测是密文

image-20250803123354221

{“text”: “5771D410 CFFE844D
24B50FCB BBDC1973
A7A935E5 C3468242
950DFCCE 94794B06
7F876A21 5D96EE09”}

image-20250803124120526

可以通过查找字符串,找到相关语句,然后交叉引用找到主函数,这里就是找到的加密函数位置,是一个tea加密,没啥变化,可以直接写脚本解密

注意key的提取,从dword_14B98[98]开始取,一共四位

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from ctypes import c_uint32

def tea_decrypt(v, key, delta, rounds=32):
v0 = c_uint32(v[0])
v1 = c_uint32(v[1])
sum = c_uint32(0xC6EF3720)

for _ in range(rounds):
v1.value -= ((v0.value << 4) + key[2]) ^ (v0.value + sum.value) ^ ((v0.value >> 5) + key[3])
v0.value -= ((v1.value << 4) + key[0]) ^ (v1.value + sum.value) ^ ((v1.value >> 5) + key[1])
sum.value += delta

return v0.value, v1.value

key = [0x12345678, 0x9ABCDEF0, 0x11111111, 0x22222222]

cipher_hex = "5771D410CFFE844D24B50FCBBBDC1973A7A935E5C3468242950DFCCE94794B067F876A215D96EE09"
cipher_bytes = bytes.fromhex(cipher_hex)

cipher_blocks = [int.from_bytes(cipher_bytes[i:i + 4], byteorder="little") for i in range(0, len(cipher_bytes), 4)]

delta = 0x61C88647

plaintext = b""
for i in range(0, len(cipher_blocks), 2):
dec_v0, dec_v1 = tea_decrypt(cipher_blocks[i:i + 2], key, delta)
plaintext += dec_v0.to_bytes(4, byteorder='little') + dec_v1.to_bytes(4, byteorder='little')

try:
print("\n[+] UTF-8 Decode (fallback with replacement):")
print(plaintext.decode('utf-8', errors='replace'))
except UnicodeDecodeError:
print("\n[!] UTF-8 decode failed.")

justCTF{TheConnection_w4s_interrupted}

baby-goes-re

一个go语言程序,先来简单了解一下

image-20250804182142963

接口调用方式(itab, rtype, interface{}

标准库调用(fmt.Fprintln, fmt.Fprint, fmt.Fscanln

调用 main_CheckFlag-加密函数

image-20250804182508726

主函数就是从这个大数据模块:从 aSmallMapWithNo + 3605 开始,共 338660 字节,然后调用main_CheckFlag函数

image-20250804182735934

加密过程简单的来说就是

flag 的第 k 个字符必须等于 babymemory[51*k + 4919]

flag的字符长度为53,k从0-52,即babymemory 起始地址:0x4CA8C0 + 3605 = 0x4CB5F5

为了方便直接用idapython,也可以把aSmallMapWithNo内容dump出来然后解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import idc
import idautils

def extract_flag():
base_addr = 0x4CA8C0
offset = 3605
positions = []
current = 4919
positions.append(current)

for i in range(1, 53):
current += 4971 + 51 * (i - 1)
positions.append(current)

flag = []
for pos in positions:
addr = base_addr + offset + pos
byte_val = idc.get_wide_byte(addr)

flag_char = chr(byte_val)
flag.append(flag_char)

full_flag = ''.join(flag)
print("\nflag:")
print(full_flag)

return full_flag

if __name__ == "__main__":
extract_flag()


justCTF{W3lc0m3_t0_R3v1NG!_Th4t_w45nt-s0-B4d-w45_1t?}

6pack

依旧是misc+re的题

先看go语言程序,找到main函数位置

image-20250805155417483

接着分析调用的一些函数

sub_4C8820函数用于创建ipv6 header

sub_4CA0E0函数发送数据包

sub_4CABA0函数使用flate/zlib解压并读取所有数据,从这里就可以推测要分析的代码应该就在给的流量包里面

流量包分析提取数据只能交给misc师傅来提取了,过程也是很艰辛的,最后得到了一个exe文件


得到的exe文件有一层upx壳,一键脱壳就行

  1. 主函数的逻辑就是,先输入一个参数,要求在30720-32767之间,这里得要爆破,如果传入的参数不对,后续通过动调得到的代码就不对,这里的v12是密钥,密钥判断

  2. sub_7FF65E8E2730函数的作用是读取给的6-pack文件,找到.go.runtimeinfo节,然后读取加密的shellcode

    注意放在同一个文件夹下,动调的时候要用到,不然动调不起来。

  3. sub_7FF65E8E26E0函数,使用 SystemFunction033 解密 shellcode,这里就涉及到第二个参数,其实就是flag。这里真实的逻辑是一个smc,动调的时候能够解密得到可执行代码

    image-20250805231818999

    这里经过动调之后把SystemFunction033的字节按c/p可以识别成函数,这里有一个长度判断,就是第二个参数(flag的长度,我们要把传入的参数改为36

image-20250805175319812

这里就是一个很明显的smc,动调过之后把byte_1B8CCB50100字节进行反编译就能得到我们要分析的代码

image-20250805175338800

image-20250805232641737

主要代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
_BOOL8 __fastcall sub_1A3CCFA0100(__int64 a1, unsigned __int64 a2)
{
void (__fastcall *v2)(char *); // rax
__int64 v3; // rcx
__int64 v4; // rax
__int64 n12; // [rsp+28h] [rbp-48h]
_QWORD v7[4]; // [rsp+30h] [rbp-40h] BYREF
unsigned __int64 v8; // [rsp+50h] [rbp-20h]
__int64 v9; // [rsp+58h] [rbp-18h]
unsigned __int64 v10; // [rsp+60h] [rbp-10h]
__int64 v11; // [rsp+68h] [rbp-8h]

v11 = a1;
v10 = a2;
v9 = 0LL;
v8 = 0LL;
memset(v7, 0, sizeof(v7));
n12 = 0LL;
v2 = sub_1A3CCFA01F8(NtCurrentPeb()->Ldr->InMemoryOrderModuleList.Flink->Flink->Flink[2].Flink, dword_1A3CCFA0253);
v2(aBcryptDll); // "bcrypt.dll"
v8 = v10 / 3;
do
{
v3 = v11;
v11 += 3LL;
((&loc_1A3CCFA026D + 2))(v3, v7);
v4 = v9;
LOBYTE(v4) = memcmp(&loc_1A3CCFA03CF + 8 * v9 + 1, v7, 0x20uLL) == 0;
n12 += v4;
v9 += 4LL;
--v8;
}
while ( v8 );
return n12 != 12;
}

这里的加密函数(loc_2320BE5026D + 2),这个是没有自动识别的函数,自己手动编译一下,这是主要的加密内容,这个函数对 3 字节输入计算 SHA256 哈希,输出 32 字节

image-20250805232946969

哈希值就是unk_1B8CCB503D0[384]内容,一共12个正确的哈希值

爆破脚本:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import hashlib

hashes = [
# 1
0x20, 0x40, 0x01, 0xDE, 0x61, 0xEE, 0x2B, 0x59, 0xF7, 0x71, 0xF5, 0x3F, 0xEB, 0x64, 0x0F, 0x35,
0x09, 0x32, 0xC5, 0xCD, 0xE6, 0x99, 0xE2, 0x3B, 0x27, 0x66, 0x29, 0x95, 0xD4, 0xBD, 0x04, 0x16,
# 2
0x73, 0xFE, 0x4A, 0x5E, 0x48, 0x6A, 0xE1, 0xF4, 0xD0, 0x33, 0xC5, 0x95, 0xC5, 0xAA, 0xC7, 0x9E,
0x6A, 0xFE, 0xAE, 0x7A, 0x28, 0xB7, 0x82, 0x9C, 0x3E, 0xA9, 0x7F, 0x0C, 0x74, 0x75, 0xFF, 0x30,
# 3
0xA3, 0x8D, 0xF0, 0x1B, 0x42, 0xFE, 0x10, 0x09, 0xF1, 0xDA, 0x3C, 0x3B, 0xF7, 0x78, 0x7B, 0xEA,
0xCD, 0x5C, 0xE1, 0x74, 0x3E, 0x6D, 0x19, 0xF6, 0xD4, 0x6D, 0x09, 0x6F, 0xD0, 0xBB, 0xA9, 0x0A,
# 4
0x67, 0x75, 0x62, 0xC4, 0x99, 0x09, 0x49, 0xFB, 0x8E, 0x8C, 0x2F, 0x81, 0x66, 0xF8, 0x0D, 0x81,
0x51, 0xA4, 0xA1, 0xC0, 0xE0, 0x67, 0x9A, 0xC2, 0x4D, 0x45, 0x46, 0x33, 0xC1, 0x70, 0x9C, 0x29,
# 5
0x16, 0xDB, 0x9A, 0xE9, 0xD8, 0xA6, 0xB5, 0xDC, 0x76, 0x16, 0xFB, 0x3B, 0x0B, 0x74, 0xE2, 0x87,
0xE4, 0x92, 0xE7, 0xD2, 0x95, 0x96, 0x1A, 0x0A, 0x14, 0xB9, 0xEE, 0x93, 0x5C, 0x82, 0x5D, 0x59,
# 6
0xAA, 0xC5, 0x13, 0xEA, 0x30, 0x6B, 0x59, 0xB9, 0xAA, 0x9A, 0xF9, 0x87, 0xD3, 0x90, 0xE3, 0x8D,
0xF0, 0x92, 0x89, 0x18, 0xB2, 0x56, 0x56, 0xC1, 0x80, 0xC2, 0x35, 0xB9, 0xAF, 0x7B, 0xE2, 0x96,
# 7
0xB7, 0xCF, 0x5A, 0x8D, 0x7E, 0xB9, 0x3D, 0x4D, 0x82, 0x5A, 0x40, 0x0F, 0xA1, 0x73, 0x02, 0x0A,
0x0D, 0x5C, 0xD3, 0x4A, 0x8C, 0x2F, 0x4F, 0x81, 0x8D, 0x01, 0xCA, 0x2B, 0xD9, 0x91, 0xC2, 0x15,
# 8
0x48, 0x7D, 0x3C, 0xFD, 0x82, 0xC3, 0x91, 0x54, 0x66, 0x51, 0x3E, 0x09, 0x7C, 0x6B, 0x00, 0x59,
0x3D, 0x8C, 0x67, 0x7C, 0xE5, 0x4B, 0x2A, 0x29, 0x2F, 0xDE, 0x8B, 0x14, 0xF8, 0x8C, 0xCB, 0x89,
# 9
0x93, 0x31, 0x30, 0xB1, 0x01, 0x31, 0x09, 0x3C, 0x44, 0x63, 0xF7, 0xC3, 0x72, 0xBA, 0x43, 0x5C,
0x09, 0x1A, 0x87, 0xA9, 0xB7, 0x78, 0x03, 0x85, 0x3F, 0x2C, 0x5A, 0xB5, 0xA3, 0xF3, 0x3C, 0xAA,
# 10
0x54, 0x7D, 0x5E, 0x2A, 0x74, 0x0B, 0x5D, 0x7D, 0x7C, 0x94, 0xC9, 0xB9, 0x33, 0x3C, 0x81, 0x83,
0xE1, 0x3A, 0x85, 0x8A, 0x52, 0x8C, 0x81, 0x88, 0xFD, 0xDD, 0x2F, 0xE1, 0x87, 0xA0, 0x7C, 0xC0,
# 11
0x7C, 0x5C, 0xD8, 0x1D, 0x84, 0x04, 0x6C, 0xAA, 0xC3, 0x35, 0xC2, 0xAF, 0xD9, 0x67, 0x37, 0x29,
0xBA, 0x0F, 0xBA, 0x09, 0xFB, 0x7C, 0xB2, 0x25, 0xFE, 0xDB, 0x64, 0x99, 0xBE, 0x5E, 0xFC, 0x29,
# 12
0xEE, 0x34, 0x0E, 0xA3, 0xEC, 0xF7, 0x7D, 0x89, 0x24, 0x7E, 0x26, 0x40, 0x15, 0xC0, 0x71, 0xD8,
0xBB, 0xD6, 0x6B, 0x30, 0xFB, 0x49, 0x47, 0x9A, 0x55, 0xC9, 0x22, 0x52, 0x82, 0xB1, 0x92, 0x87
]

# 转为 bytes
hashes_bytes = bytes(hashes)
# 分割为 12 个 32 字节块
hash_list = [hashes_bytes[i:i+32] for i in range(0, 384, 32)]

def brute_force_3byte_sha256(target_hash):
for i in range(0, 0x1000000): # 0x000000 ~ 0xFFFFFF
b1 = (i >> 16) & 0xFF
b2 = (i >> 8) & 0xFF
b3 = i & 0xFF
data = bytes([b1, b2, b3])
h = hashlib.sha256(data).digest()
if h == target_hash:
return data
return None

result = []
for idx, h in enumerate(hash_list):
print(f"[+] Brute-forcing block {idx+1}/12...")
plain = brute_force_3byte_sha256(h)
if plain is None:
print(f"[-] Failed to crack block {idx+1}")
result.append(b"???")
else:
print(f" Found: {plain.hex()} -> {repr(plain)}")
result.append(plain)

flag = b"".join([block[::-1] for block in result[::-1]])
print(f"argv[1] = {flag}")
print(f"Length: {len(flag)} bytes")

Justctf2025
https://j1nxem-o.github.io/2025/08/13/Justctf2025/
作者
J1NXEM
发布于
2025年8月13日
更新于
2025年8月23日
许可协议